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Abstract

We present a complete list of 6–dimensional Manin triples or,
equivalently, of 3–dimensional Lie bialgebras. We start from the well
known classification of 3–dimensional real Lie algebras and assume the
canonical bilinear form on the 6-dimensional Drinfeld double. Then
we solve the Jacobi identities for the dual algebras. Finally we find
mutually non–isomorphic Manin triples. The complete list consists of
78 classes of Manin triples, or 44 Lie bialgebras if one considers dual
bialgebras equivalent.
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1 Introduction

In recent years, the study of T–duality in string theory has led to
discovery of Poisson–Lie T–dual sigma models. Klimč́ık and Ševera
have found a procedure allowing to construct such models from a given
Manin triple (D,G, G̃) , i.e. a decomposition of a Lie algebra D into
two maximally isotropic subalgebras G, G̃. The construction of the
Poisson–Lie T–dual sigma models is described in [1] and [2]. The
models have target spaces in the Lie groups G and G̃ and are defined
by the Lagrangians

L = Eij(g)(g−1∂−g)i(g−1∂+g)j (1)

L̃ = Ẽij(g̃)(g̃−1∂−g̃)i(g̃−1∂+g̃)j (2)

where the matrices E(g) and Ẽ(g̃) are constructed from a constant
invertible matrix E(e) by virtue of the adjoint representation of the
group G resp G̃ on D. It implies that any pair of Poisson–Lie T–
dual sigma models is given (up to the constant matrix E) by the
corresponding Manin triple and that’s why it is interesting and useful
to classify these structures.

One can easily see that the dimension of the Lie algebra D must
be even. In the dimension two D must be abelian and there is just
one Manin triple (D,G, G̃) ≡ (D, G̃,G) where dimG = dimG̃ = 1. The
classification of Manin triples for the four–dimensional Lie algebras
together with the pairs of dual models was given in [3]. In this paper
we are going to classify the Manin triples of the 6–dimensional real
Lie algebras.

Important steps in this direction were made in [4] where a list of
possible maximally isotropic subalgebras of the 6–dimensional Lie al-
gebras can be found. It turns out that the subalgebras don’t specify
the Manin triple completely. For certain algebras there exist sev-
eral rather different possible pairings, allowing to construct different
Manin triples. In the present paper, we present a complete list of real
6–dimensional Manin triples, i.e. we give not only the possible subal-
gebras, but also the corresponding ad–invariant form (i.e we write dual
bases of the algebras with respect to this form and their Lie brackets).
The complex solvable Manin triples were classified in [5].

As we shall see Manin triples are equivalent to Lie bialgebras and
the classification of the three–dimensional Lie bialgebras (i.e. six–
dimensional Manin triples) was given in [6]. Our classification was
done independently without knowledge of [6]. The consequent com-
parison proved that the results are identical even though we have
started from a different description of the three–dimensional algebras
and used a completely different method. It means that the present



work can be considered as an independent check of [6] with the results
expressed in a different form, namely as Manin triples.

In the following sections, we firstly recall the definitions of Manin
triple, Drinfeld double and Lie bialgebra, then briefly explain the ap-
proach we have used to find all algebras of 6–dimensional Drinfeld
doubles, and finally give a complete list of all 6–dimensional Manin
triples.

2 Manin triples, Drinfeld doubles, Lie

bialgebras

The Drinfeld double D is defined as a Lie group such that its Lie alge-
bra D equipped by a symmetric ad–invariant nondegenerate bilinear
form 〈., .〉 can be decomposed into a pair of maximally isotropic sub-
algebras G, G̃ such that D as a vector space is the direct sum of G and
G̃. This ordered triple of algebras (D,G,G̃) is called Manin triple.

One can see that the dimensions of the subalgebras are equal and
that bases {Xi}, {X̃i} in the subalgebras can be chosen so that

〈Xi, Xj〉 = 0, 〈Xi, X̃
j〉 = 〈X̃j , Xi〉 = δj

i , 〈X̃
i, X̃j〉 = 0. (3)

This canonical form of the bracket is invariant with respect to the
transformations

X ′
i = XkA

k
i , X̃

′j = (A−1)j
kX̃

k. (4)

Due to the ad-invariance of 〈., .〉 the algebraic structure of D is

[Xi, Xj ] = fij
kXk, [X̃i, X̃j ] = f̃ ij

kX̃
k,

[Xi, X̃
j ] = fki

jX̃k + ˜f jk
iXk. (5)

It is clear that to any Manin triple (D,G, G̃) one can construct the
dual one by interchanging G ↔ G̃, i.e. interchanging the structure
constants fij

k ↔ f̃ ij
k. All properties of Lie algebras (the nontrivial

being the Jacobi identities) remain to be satisfied. On the other hand
for given Drinfeld double more than two Manin triples can exist.

One can rewrite the structure of a Manin triple also in another,
equivalent, but for certain considerations more suitable, form of Lie
bialgebra.

A Lie bialgebra is a Lie algebra g equipped also by a Lie cobracket1

δ : g → g ⊗ g : δ(x) =
∑

x[1] ⊗ x[2] such that∑
x[1] ⊗ x[2] = −

∑
x[2] ⊗ x[1], (6)

1Summation index is suppressed



(id⊗ δ) ◦ δ(x) + cyclic permutations of tensor indices = 0, (7)
δ([x, y]) =

∑
[x, y[1]]⊗ y[2] + y[1] ⊗ [x, y[2]]−

− [y, x[1]]⊗ x[2] − x[1] ⊗ [y, x[2]] (8)

(for detailed account on Lie bialgebras see e.g. [7] or [8], Chapter 8).
The correspondence between a Manin triple and a Lie bialgebra

can now be formulated in the following way. Because both subalgebras
G, G̃ of the Manin triple are of the same dimension and are connected
by nondegenerate pairing, it is natural to consider G̃ as a dual G∗ to G
and to use the Lie bracket in G̃ to define the Lie cobracket in G; δ(x) is

given by 〈δ(x), ỹ⊗ z̃〉 = 〈x, [ỹ, z̃]〉, ∀ỹ, z̃ ∈ G∗, i.e. δ(Xi) = ˜
f jk

i Xj⊗Xk.
The Jacobi identities in G̃

f̃kl
m f̃ ij

l + f̃ il
m

˜
f jk

l + f̃ jl
mf̃ki

l = 0 (9)

are then equivalent to the property of cobracket (7) and the G̃–component
of the mixed Jacobi identities 2

˜f jk
lfmi

l + f̃kl
mfli

j + f̃ jl
iflm

k + f̃ jl
mfil

k + f̃kl
iflm

j = 0 (10)

are equivalent to (8).
From now on, we will use the formulation in terms of Manin triples,

Lie bialgebra formulation of all results can be easily derived from it.
We also consider only algebraic structure, the Drinfeld doubles as the
Lie groups can be obtained in principle by means of exponential map
and usual theorems about relation between Lie groups and Lie alge-
bras apply, e.g. there is a one to one correspondence between (finite–
dimensional) Lie algebras and connected and simply connected Lie
groups. The group structure of the Drinfeld double can be deduced
e.g. by taking matrix exponential of adjoint representation of its al-
gebra.

3 Method of classification

In this section we present the approach we have used to find all 6–
dimensional Manin triples, i.e. 3–dimensional Lie bialgebras.

Starting point for our computations is the well known classification
of 3–dimensional real Lie algebras (see e.g. [9] or [4]). Non–isomorphic
Lie algebras are written in 11 classes, traditionally known as Bianchi
algebras. Their commutation relations are:

[X1, X2] = −aX2 + n3X3, [X2, X3] = n1X1, [X3, X1] = n2X2 + aX3,
(11)

2The Jacobi identities [Xi, [X̃j , X̃k]] + cyclic = 0 lead to both (10) (terms proportional
to X̃ l) and (9) (terms proportional to Xl).



where the parameters a, n1, n2, n3 have the following values

Class a n1 n2 n3

I 0 0 0 0
II 0 1 0 0

V II0 0 1 1 0
V I0 0 1 -1 0
IX 0 1 1 1

V III 0 1 1 -1
V 1 0 0 0
IV 1 0 0 1

V IIa (a > 0) a 0 1 1
III 1 0 1 -1

V Ia (a > 0, a 6= 1) a 0 1 -1

Therefore the 1st subalgebra G of the Manin triple D must be one
of the Bianchi algebras given above and we can choose its basis so
that the Lie brackets are of the form (11). In the 2nd subalgebra G̃ we
choose the dual basis X̃i so that (3) holds, and treat nine independent
components of structure coefficients f̃ ij

k of the 2nd subalgebra G̃ in the
basis X̃i as unknowns. We cannot assume that the f̃ ij

k are of the form
(11) as well because it can be incompatible with (3). Then we solve the
mixed Jacobi identities (10) (these relations form a system of linear
equations in f̃ ij

k ) and the Jacobi identities for the dual algebra (9) (i.e.
quadratic in f̃ ij

k ).
As a result, we have found all structure coefficients of G̃ consistent

with the definition of Manin triple and the next step was to determine
the Bianchi classes of obtained algebras G̃. Finally we have found
the the non–isomorphic Manin triples by considering Manin triples
connected by the transformations (4) (i.e. change of basis in G ac-
companied by the dual change of basis in G̃ with respect to 〈, 〉) as
equivalent and choosing one representant in each equivalence class.

In computations computer algebra systems Maple V and Mathe-
matica 4 were independently used for manipulating expressions and
solving sets of linear and quadratic equations, their results were checked
one against the other.

Before listing our results, we shall give an example showing the
progress of computation in some detail.
Example: Let us consider the algebra V III, i.e. G = sl(2,<).

[X1, X2] = −X3, [X2, X3] = X1, [X3, X1] = X2.

When one solves the mixed Jacobi identities (10), he finds that the
2nd subalgebra must have the form

[X̃1, X̃2] = −αX̃1+βX̃2, [X̃2, X̃3] = γX̃2+αX̃3, [X̃3, X̃1] = −γX̃1−βX̃3.



The Jacobi identities in the 2nd subalgebra (9) in this case don’t
impose any further condition on the structure constants f̃ ij

k, i.e. we
have already found the structure of all possible 2nd subalgebras G̃ in
the Manin triple.

Next we find the Bianchi forms of G̃. It turns out that the 2nd
algebra is of the Bianchi type I (f̃ ij

k = 0) if α = β = γ = 0 and of
type V otherwise.

Then we find values of f̃ ij
k that allow transformation (4) leading

to the rescaled Bianchi form V of the 2nd subalgebra G̃ and leaving the
Bianchi form of the 1st subalgebra sl(2,<) invariant. This is possible
only for

α2 + β2 − γ2 > 0

(for α2 + β2 − γ2 < 0 the transformation matrix would be complex,
not real, for α2 +β2−γ2 = 0 it would be singular). Therefore we have
in the case α2 + β2 − γ2 > 0 a one–parametric set of non–equivalent
Manin triples

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0

and we must find representants of remaining classes of possible Manin
triples. We choose the forms

[X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b > 0

for α2 + β2 − γ2 < 0 and

[X̃1, X̃2] = X̃2, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = −(X̃1 + X̃3)

for α2 + β2 − γ2 = 0, α 6= 0 ∨ β 6= 0 ∨ γ 6= 0 and easily verify that
every possible 2nd subalgebra G̃ can be taken to one of the given forms
by transformation (4) which doesn’t change the structure constants of
the 1st subalgebra G = sl(2,<).

Details of computations for each Bianchi algebra are given in the
Appendix.

4 Results: 6–dimensional Manin triples

The forms of non–equivalent Manin triples were choosen according to
the following criteria: The 1st subalgebra is in the Bianchi form, the
2nd is in the form closest to Bianchi, i.e. Bianchi form if possible,
or the structure constants are multiple of the Bianchi ones, or form a
permution of the Bianchi ones, or, if neither is possible, are choosen
to be as many zeros and small integers as possible.



In order to shorten the list, we have not explicitly written out
the structure of algebras that can be found by the duality transform
G ↔ G̃ from the ones given in the list.

1. Dual algebras to Bianchi algebra IX:

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra V

[X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b > 0.

2. Dual algebras to Bianchi algebra V III:

[X1, X2] = −X3, [X2, X3] = X1, [X3, X1] = X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra V

i. [X̃1, X̃2] = −bX̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b >
0.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b >
0.

iii. [X̃1, X̃2] = X̃2, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = −(X̃1 +
X̃3).

3. Dual algebras to Bianchi algebra V IIa:

[X1, X2] = −aX2+X3, [X2, X3] = 0, [X3, X1] = X2+aX3, a > 0.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0.



(c) Bianchi algebra V II1/a

[X̃1, X̃2] = b(− 1
aX̃2 + X̃3), [X̃2, X̃3] = 0,

[X̃3, X̃1] = b(X̃2 + 1
aX̃3), b ∈ < − {0}.

4. Dual algebras to Bianchi algebra V II0:

[X1, X2] = 0, [X2, X3] = X1, [X3, X1] = X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(c) Bianchi algebra IV

[X̃1, X̃2] = b(−X̃2+X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃3, b ∈ <−{0}.

(d) Bianchi algebra V

i. [X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3, .

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = bX̃2, [X̃3, X̃1] = −bX̃1, b >
0.

5. Dual algebras to Bianchi algebra V Ia:

[X1, X2] = −aX2−X3, [X2, X3] = 0, [X3, X1] = X2+aX3, a > 0, a 6= 1.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

(c) Bianchi algebra V I1/a

i. [X̃1, X̃2] = −b( 1
aX̃2 + X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] =

b(X̃2 + 1
aX̃3), b ∈ < − {0}.

ii. [X̃1, X̃2] = X̃1, [X̃2, X̃3] = a+1
a−1(X̃2 + X̃3), [X̃3, X̃1] =

X̃1.



iii. [X̃1, X̃2] = X̃1, [X̃2, X̃3] = a−1
a+1(−X̃2+X̃3), [X̃3, X̃1] =

−X̃1.

6. Dual algebras to Bianchi algebra V I0:

[X1, X2] = 0, [X2, X3] = X1, [X3, X1] = −X2.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

[X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(c) Bianchi algebra IV

i. [X̃1, X̃2] = b(−X̃2 + X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] =
bX̃3, b ∈ < − {0}.

ii. [X̃1, X̃2] = (−X̃1+X̃2+X̃3), [X̃2, X̃3] = X̃3, [X̃3, X̃1] =
−X̃3.

(d) Bianchi algebra V

i. [X̃1, X̃2] = −X̃2, [X̃2, X̃3] = 0, [X̃3, X̃1] = X̃3.

ii. [X̃1, X̃2] = −X̃1 + X̃2, [X̃2, X̃3] = X̃3, [X̃3, X̃1] =
−X̃3.

iii. [X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃2, [X̃3, X̃1] = X̃1.

7. Dual algebras to Bianchi algebra V :

[X1, X2] = −X2, [X2, X3] = 0, [X3, X1] = X3.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

and dual algebras (G ↔ G̃) to algebras given above for V I0,
V II0, V III, IX.

8. Dual algebras to Bianchi algebra IV :

[X1, X2] = −X2 + X3, [X2, X3] = 0, [X3, X1] = X3.

Dual algebras:



(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = −X̃1, [X̃3, X̃1] = 0.

iii. [X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = bX̃2, b ∈ < −
{0}.

and dual algebras (G ↔ G̃) to algebras given above for V I0,
V II0.

9. Dual algebras to Bianchi algebra III:

[X1, X2] = −X2 −X3, [X2, X3] = 0, [X3, X1] = X2 + X3.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃1, [X̃3, X̃1] = 0.

(c) Bianchi algebra III

i. [X̃1, X̃2] = −b(X̃2 + X̃3), [X̃2, X̃3] = 0, [X̃3, X̃1] =
b(X̃2 + X̃3), b ∈ < − {0}.

ii. [X̃1, X̃2] = 0, [X̃2, X̃3] = X̃2 + X̃3, [X̃3, X̃1] = 0.

iii. [X̃1, X̃2] = X̃1, [X̃2, X̃3] = 0, [X̃3, X̃1] = −X̃1.

10. Dual algebras to Bianchi algebra II:

[X1, X2] = 0, [X2, X3] = X1, [X3, X1] = 0.

Dual algebras:

(a) Bianchi algebra I

[X̃1, X̃2] = 0, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

(b) Bianchi algebra II

i. [X̃1, X̃2] = X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

ii. [X̃1, X̃2] = −X̃3, [X̃2, X̃3] = 0, [X̃3, X̃1] = 0.

and dual algebras (G ↔ G̃) to algebras given above for III, IV ,
V I0, V Ia, V II0, V IIa.

11. Dual algebras to Bianchi algebra I:

[X1, X2] = 0, [X2, X3] = 0, [X3, X1] = 0.

Dual algebras: all Bianchi algebras (in their Bianchi forms)



5 Conclusions

We have classified 6–dimensional Manin triples or, equivalently, 3–
dimensional Lie bialgebras. In computations computer algebra sys-
tems Maple V and Mathematica 4 were used for solving the sets of
linear and quadratic equations that follow from the Jacobi identities
and similarity transformations. The results were calculated indepen-
dently in both systems and afterwards were checked one against the
other. The complete list consists of 78 classes of Manin triples (if one
considers dual Lie bialgebras equivalent, then the count is 44). An
open problem that remains is detecting the Manin triples that belong
to the same Drinfeld double or, in other words, the classification of
the 6-dimensional Drinfeld doubles.

One of interesting results is the number of possible Lie bialgebra
structures for the algebra V III, i.e. sl(2,<). In this case there are
up to rescaling 3 non–equivalent Manin triples. As mentioned in the
Introduction, to every Manin triple correspond a pair of Poisson–Lie
T–dual models. Therefore, there should exist 3 different pairs of non-
abelian Poisson-Lie T-dual models for sl(2,<). Only one of them
appeared in the literature so far [10]. There is a natural question
whether these models are equivalent (i.e. whether they correspond
to the decomposition of one Drinfeld double) and if they lead after
quantisation to the same quantum model.

Appendix: Most general form of G̃ of

Manin triple with given G
In this Appendix we present our computations in some detail. For each
Bianchi algebra we give solutions of the mixed Jacobi identities (10),
i.e. linear equations in f̃ , the remaining non–trivial Jacobi identities
in G̃ (9), i.e. in general quadratic equations in f̃ and their solutions,
in general depending on several parameters α, β, . . . Finally we specify
values of parameters allowing transformation (4) of G̃ into forms of G̃
given in the list of non–isomorphic Manin triples.

• G = IX
The mixed Jacobi identities (10) imply

˜f23
3 = − ˜f12

1,
˜f23

2 = ˜f13
1,

˜f13
3 = ˜f12

2,
˜f23

1 = 0, ˜f12
3 = 0, ˜f13

2 = 0.

The Jacobi identities in G̃ (9) in this case don’t impose any new
condition. The general form of G̃ is therefore

[X̃1, X̃2] = αX̃1 + βX̃2, [X̃2, X̃3] = γX̃2 − αX̃3,



[X̃3, X̃1] = −γX̃1 − βX̃3

G̃ can be transformed into

– Bianchi algebra I in the standard form IX (a) if α = β =
γ = 0,

– Bianchi algebra V in the rescaled standard form IX (b) with
b =

√
α2 + β2 + γ2 otherwise.

• G = V III
The mixed Jacobi identities (10) imply

˜f12
1 = − ˜f23

3,
˜f13

1 = ˜f23
2,

˜f12
2 = ˜f13

3,
˜f23

1 = 0, ˜f13
2 = 0, ˜f12

3 = 0.

The Jacobi identities in G̃ (9) in this case don’t impose any new
condition. The general form of G̃ is therefore

[X̃1, X̃2] = −αX̃1 + βX̃2, [X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃3.

G̃ can be transformed into

– Bianchi algebra I in the standard form V III (a) if α = β =
γ = 0,

– Bianchi algebra V

∗ in the rescaled standard form V III (b) i. with b =√
α2 + β2 − γ2 if α2 + β2 − γ2 > 0,

∗ in the form V III (b) ii. with b =
√
−(α2 + β2 − γ2) if

α2 + β2 − γ2 < 0,
∗ in the form V III (b) iii. if α2 + β2 − γ2 = 0, and

α 6= 0 ∨ β 6= 0 ∨ γ 6= 03.

• G = V IIa

The mixed Jacobi identities (10) imply

˜f13
2 = a ˜f13

3,
˜f12

2 = ˜f13
3,

˜f23
3 = −a2 ˜f23

2 + a2 ˜f13
1 − ˜f23

2 + ˜f13
1

2a
,

˜f12
1 = −a2 ˜f23

2 + a2 ˜f13
1 + ˜f23

2 − ˜f13
1

2a
, ˜f12

3 = −a ˜f13
3.

The Jacobi identities in G̃ (9) reduce to

4a ˜f23
1

˜f13
3 + (a ˜f23

2)
2 + 2a2 ˜f23

2
˜f13

1 + ( ˜f23
2)

2 − 2 ˜f23
2

˜f13
1+

+(a ˜f13
1)

2 + ( ˜f13
1)

2 = 0.

The solutions of this equation give the following general forms
of G̃:

3In order to avoid abundant parentheses, logical conjuctions written in terms of symbols
are considered with higher priority than that written by words and, or.



1.

[X̃1, X̃2] = − 1
2a

(a2α + βa2 + α− β)X̃1 + γX̃2 − γaX̃3,

[X̃2, X̃3] = − 1
4γa

(a2α2 + 2αβa2 + α2 − 2αβ + β2a2 + β2)X̃1

+αX̃2 − 1
2a

(a2α + βa2 − α + β)X̃3,

[X̃3, X̃1] = −βX̃1 − γaX̃2 − γX̃3.

G̃ can be transformed into
– Bianchi algebra V II1/a in the rescaled standard form

V IIa (c) with b = −aγ.
2. [X̃1, X̃2] = 0, [X̃2, X̃3] = αX̃1, [X̃3, X̃1] = 0.

G̃ can be transformed into
– Bianchi algebra I in the standard form V IIa (a) if α =

0,
– Bianchi algebra II

∗ in the standard form V IIa (b) i. if α > 0,
∗ in the form V IIa (b) ii. if α < 0.

• G = V II0

The mixed Jacobi identities (10) imply

˜f12
1 = − ˜f23

3,
˜f12

2 = ˜f13
3,

˜f23
2 = ˜f13

1,
˜f13

2 = 0, ˜f23
1 = 0.

The Jacobi identities in G̃ (9) reduce to

˜f12
3

˜f13
1 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = −αX̃1 + βX̃2 + γX̃3,

[X̃2, X̃3] = αX̃3,

[X̃3, X̃1] = −βX̃3.

G̃ can be transformed into
– Bianchi algebra I in the standard form V II0 (a) if γ =

β = α = 0,
– Bianchi algebra II

∗ in the form V II0 (b) i. if γ > 0 and β = α = 0,
∗ in the form V II0 (b) ii. if γ < 0 and β = α = 0,



– Bianchi algebra IV in the rescaled standard form V II0

(c) with b = −β2+α2

γ if γ 6= 0 and β 6= 0 ∨ α 6= 0,
– Bianchi algebra V in the standard form V II0 (d) i. with

if γ = 0 and β 6= 0 ∨ α 6= 0.
2.

[X̃1, X̃2] = −αX̃1 + βX̃2,

[X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃3.

G̃ can be transformed into
– Bianchi algebra I in the standard form V II0 (a) if α =

β = γ = 0,
– Bianchi algebra V

∗ in the standard form V II0 (d) i. if γ = 0,
∗ in the form V II0 (d) ii. with b = |γ| if γ 6= 0.

• G = V Ia

The mixed Jacobi identities (10) imply

˜f13
1 = −−a2 ˜f12

1 + a2 ˜f23
3 − ˜f23

3 − ˜f12
1

2a
, ˜f12

3 = a ˜f12
2,

˜f13
3 = ˜f12

2,

˜f13
2 = a ˜f12

2,
˜f23

2 =
−a2 ˜f12

1 + a2 ˜f23
3 + ˜f23

3 + ˜f12
1

2a
.

The Jacobi identities in G̃ (9) reduce to

4a ˜f23
1

˜f12
2 + (a ˜f12

1)
2 − 2a2 ˜f12

1
˜f23

3 − 2 ˜f12
1

˜f23
3 − ( ˜f12

1)
2+

+(a ˜f23
3)

2 − ( ˜f23
3)

2 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = αX̃1 + βX̃2 + aβX̃3,

[X̃2, X̃3] = −a2α2 − 2αγa2 − 2αγ − α2 + γ2a2 − γ2

4aβ
X̃1

+
(−a2α + γa2 + γ + α)

2a
X̃2 + γX̃3,

[X̃3, X̃1] =
−a2α + γa2 − γ − α

2a
X̃1 − aβX̃2 − βX̃3.

G̃ can be transformed into



– Bianchi algebra V I1/a in the rescaled standard form V Ia

(c) with b = −aβ.
2.

[X̃1, X̃2] = αX̃1,

[X̃2, X̃3] = βX̃1 + α
a + 1
a− 1

X̃2 + α
a + 1
a− 1

X̃1,

[X̃3, X̃1] = αX̃1.

G̃ can be transformed into
– Bianchi algebra I in the standard form V Ia (a) if α =

β = 0,
– Bianchi algebra II in the standard form V Ia (b) if α = 0

and β 6= 0.
– Bianchi algebra V I1/a in the form V Ia (c) ii. if α 6= 0.

3.

[X̃1, X̃2] = αX̃1,

[X̃2, X̃3] = βX̃1 − α
a− 1
a + 1

X̃2 + α
a− 1
a + 1

X̃3,

[X̃3, X̃1] = −αX̃1.

G̃ can be transformed into
– Bianchi algebra I in the standard form V Ia (a) if α =

β = 0,
– Bianchi algebra II in the standard form V Ia (b) if α = 0

and β 6= 0.
– Bianchi algebra V I1/a in the form V Ia (c) ii. if α 6= 0.

• G = V I0

The mixed Jacobi identities (10) imply

˜f13
3 = ˜f12

2,
˜f13

1 = ˜f23
2,

˜f12
1 = − ˜f23

3,
˜f13

2 = 0, ˜f23
1 = 0.

The Jacobi identities in G̃ (9) reduce to

˜f12
3

˜f23
2 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = −αX̃1 + βX̃2 + γX̃3,

[X̃2, X̃3] = αX̃3,

[X̃3, X̃1] = −βX̃3.

G̃ can be transformed into



– Bianchi algebra I in the standard form V I0 (a) if α =
β = γ = 0,

– Bianchi algebra II in the form V I0 (b) if γ 6= 0 and
α = β = 0,

– Bianchi algebra IV

∗ in the rescaled standard form V I0 (c) i. with b =
α2−β2

γ if γ 6= 0 and α2 6= β2,

∗ in the form V I0 (c) ii. with if γ 6= 0 and α2 = β2 6= 0,
– Bianchi algebra V

∗ in the standard form V I0 (d) i. if γ = 0 and α2 6= β2,
∗ in the form V I0 (d) ii. if γ = 0 and α2 = β2 6= 0,

2.

[X̃1, X̃2] = −αX̃1 + βX̃2,

[X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃3.

G̃ can be transformed into
– Bianchi algebra I in the standard form V I0 (a) if α =

β = γ = 0,
– Bianchi algebra V

∗ in the form V I0 (d) i. if γ = 0 and α2 6= β2,
∗ in the form V I0 (d) ii. if γ = 0 and α2 = β2,
∗ in the form V I0 (d) iii. with b = |γ| if γ 6= 0.

• G = V
The mixed Jacobi identities (10) imply

˜f12
1 = ˜f23

3,
˜f13

3 = − ˜f12
2,

˜f23
2 = − ˜f13

1.

The Jacobi identities in G̃ (9) in this case don’t impose any new
condition. The general form of G̃ is therefore

[X̃1, X̃2] = αX̃1 + βX̃2 + γX̃3,

[X̃2, X̃3] = δX̃1 − εX̃2 + αX̃3,

[X̃3, X̃1] = −εX̃1 − ζX̃2 + βX̃3.

Finding the Bianchi forms of this algebra for all values of param-
eters seems to be rather complicated, because this case contains
also all 2nd subalgebras of duals of Manin triples (D,G, G̃) with
G̃ ≡ V given above. Therefore we compute only the values of



parameters for which G̃ is isomorphic to I, . . . , V . We find that
G̃ can be transformed into4

– Bianchi algebra I in the standard form V (a) if α = β =
γ = δ = ε = ζ = 0,

– Bianchi algebra II

∗ in the form V (b) i. if
· ∃x, y s.t. α = xγ, β = yγ, ε = −xyγ, ζ = −y2γ, δ =

x2γ, γ 6= 0
· or α = β = γ = 0 and ∃x s.t. ε = −xδ, ζ = −x2δ, x 6=

0, δ 6= 0
· or α = β = γ = δ = ε = 0, ζ 6= 0,

∗ in the form V (b) ii. if α = β = γ = ε = ζ = 0 and
δ 6= 0.

• G = IV
The mixed Jacobi identities (10) imply

˜f12
3 = 0, ˜f12

2 = 0, ˜f23
2 = − ˜f13

1 − 2 ˜f12
1,

˜f23
3 = ˜f12

1,
˜f13

3 = 0.

The Jacobi identities in G̃ (9) reduce to

( ˜f12
1)

2 = 0.

The solution of this equation gives the most general form of G̃:

[X̃1, X̃2] = 0,

[X̃2, X̃3] = αX̃1 − βX̃2,

[X̃3, X̃1] = −βX̃1 − γX̃2.

G̃ can be transformed into

– Bianchi algebra I in the standard form IV (a) if α = β =
γ = 0,

– Bianchi algebra II

∗ in the standard form IV (b) i. if γ = β = 0 and α > 0,
∗ in the form IV (b) ii. if γ = β = 0 and α < 0,
∗ in the form IV (b) iii. with b = −γ if γ 6= 0 and

β2 + αγ = 0,
– Bianchi algebra V I0

∗ in the rescaled standard form with b = γ if γ 6= 0 and
β2 +αγ > 0. The corresponding Manin triple is dual to
the triple V I0 (c) i.

4It is helpful to exploit the fact that the commutant of II is one–dimensional, i.e.
suitably written matrix of structure coefficients has rank 1.



∗ in the form

[X̃1, X̃2] = 0, [X̃2, X̃3] = X̃2, [X̃3, X̃1] = X̃1

if γ = 0 and β 6= 0. The corresponding Manin triple is
dual to the triple V I0 (c) ii.

– Bianchi algebra V II0 in the rescaled standard form with
b = γ if γ 6= 0 and β2 + αγ < 0. The corresponding Manin
triple is dual to the triple V II0 (c) i.

• G = III
The mixed Jacobi identities (10) imply

˜f13
3 = ˜f12

2,
˜f12

1 = ˜f13
1,

˜f12
3 = ˜f12

2,
˜f13

2 = ˜f12
2,

˜f23
3 = ˜f23

2.

The Jacobi identities in G̃ (9) reduce to

˜f23
1

˜f12
2 − ˜f13

1
˜f23

3 = 0.

The solutions of this equation give the following most general
forms of G̃:

1.

[X̃1, X̃2] = αX̃1 + βX̃2 + βX̃3,

[X̃2, X̃3] =
αγ

β
X̃1 + γX̃2 + γX̃3,

[X̃3, X̃1] = −αX̃1 − βX̃2 − βX̃3.

G̃ can be transformed into
– Bianchi algebra III in the rescaled standard form III

(c) i. with b = 1/β.
2.

[X̃1, X̃2] = 0,

[X̃2, X̃3] = αX̃1 + βX̃2 + βX̃3,

[X̃3, X̃1] = 0.

G̃ can be transformed into
– Bianchi algebra I in the standard form III (a) if α =

β = 0,
– Bianchi algebra II in the form III (b) i. if β = 0 and

α 6= 0,
– Bianchi algebra III in the form III (c) ii. if β 6= 0.



3.

[X̃1, X̃2] = αX̃1,

[X̃2, X̃3] = βX̃1,

[X̃3, X̃1] = −αX̃1.

G̃ can be transformed into
– Bianchi algebra I in the standard form III (a) if α =

β = 0,
– Bianchi algebra II in the form III (b) i. if α = 0 and

β 6= 0,
– Bianchi algebra III in the form III (c) iii. if α 6= 0.

• G = II
Finding the Bianchi forms of the 2nd algebra for all values of pa-
rameters again seems to be rather complicated, because it con-
tains also all 2nd subalgebras of duals of Manin triples (D,G, G̃)
with G̃ ≡ II given above. Therefore we compute only the values
of parameters for which possible G̃s are isomorphic to I, II.
The mixed Jacobi identities (10) imply

˜f13
1 = ˜f23

2,
˜f23

1 = 0, ˜f12
1 = − ˜f23

3.

The Jacobi identities in G̃ (9) reduce to

− ˜f13
3

˜f23
3 + ˜f23

3
˜f12

2 − 2 ˜f12
3

˜f23
2 = 0,

−2 ˜f13
2

˜f23
3 − ˜f12

2
˜f23

2 + ˜f23
2

˜f13
3 = 0.

The solutions of these equations give the following most general
forms of G̃:

1.

[X̃1, X̃2] = −αX̃1 − 2βα− γδ

γ
X̃2 − α2β

γ2
X̃3,

[X̃2, X̃3] = γX̃2 + αX̃3,

[X̃3, X̃1] = −γX̃1 − βX̃2 − δX̃3.

G̃ of this form represents Bianchi algebras IV, V only.
2.

[X̃1, X̃2] = αX̃2 + βX̃3,

[X̃2, X̃3] = 0,

[X̃3, X̃1] = −γX̃2 − δX̃3.



– Bianchi algebra I in the standard form V (a) if α = β =
γ = δ = 0,

– Bianchi algebra II

∗ in the form II (b) i. if ∃x : γ = −x2β, δ = −xβ, α =
xβ, β > 0 or δ = α = β = 0, γ < 0,

∗ in the form II (b) ii. if ∃x : γ = −x2β, δ = −xβ, α =
xβ, β < 0 or δ = α = β = 0, γ > 0,

Bianchi algebras III, IV, V, V Ia, V I0, V IIa, V II0 otherwise.
3.

[X̃1, X̃2] = −αX̃1 + βX̃2 + γX̃1,

[X̃2, X̃3] = αX̃3,

[X̃3, X̃1] = −βX̃3.

– Bianchi algebra I in the standard form V (a) if α = β =
γ = 0,

– Bianchi algebra II

∗ in the form II (b) i. if α = β = 0, γ > 0,
∗ in the form II (b) ii. if α = β = 0, γ < 0,

Bianchi algebras IV, V otherwise.

• G = I
G̃ might be any 3–dimensional Lie algebra, it can be brought to
its Bianchi form by the transformation (4).
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